Modeling upper tropospheric and lower stratospheric water vapor anomalies

نویسنده

  • M. R. Schoeberl
چکیده

The domain-filling, forward trajectory calculation model developed by Schoeberl and Dessler (2011) is used to further investigate processes that produce upper tropospheric and lower stratospheric water vapor anomalies. We examine the pathways parcels take from the base of the tropical tropopause layer (TTL) to the lower stratosphere. Most parcels found in the lower stratosphere arise from East Asia, the Tropical West Pacific (TWP) and Central/South America. The belt of TTL parcel origins is very wide compared to the final dehydration zones near the top of the TTL. This is due to the convergence of rising air due to the stronger diabatic heating near the tropopause relative to levels above and below. The observed water vapor anomalies – both wet and dry – correspond to regions where parcels have minimal displacement from their initialization. These minimum displacement regions include the winter TWP and the Asian and American monsoons. To better understand the stratospheric water vapor concentration we introduce the water vapor spectrum and investigate the source of the wettest and driest components of the spectrum. We find that the driest air parcels originate below the TWP, moving upward to dehydrate in the TWP cold upper troposphere. The wettest air parcels originate at the edges of the TWP as well as in the summer American and Asian monsoons. The wet air parcels are important since they skew the mean stratospheric water vapor distribution toward higher values. Both TWP cold temperatures that produce dry parcels as well as extra-TWP processes that control the wet parcels determine stratospheric water vapor.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stratospheric temperature trends: our evolving understanding

We review the scientific literature since the 1960s to examine the evolution of modeling tools and observations that have advanced understanding of global stratospheric temperature changes. Observations show overall cooling of the stratosphere during the period for which they are available (since the late 1950s and late 1970s from radiosondes and satellites, respectively), interrupted by episod...

متن کامل

Temperature trends in the tropical upper troposphere and lower stratosphere: Connections with sea surface temperatures and implications for water vapor and ozone

[1] Satellite observations and chemistry-climate model experiments are used to understand the zonal structure of tropical lower stratospheric temperature, water vapor, and ozone trends. The warming in the tropical upper troposphere over the past 30 years is strongest near the Indo-Pacific warm pool, while the warming trend in the western and central Pacific is much weaker. In the lower stratosp...

متن کامل

Accuracy of tropospheric and stratospheric water vapor measurements by the cryogenic frost point hygrometer: Instrumental details and observations

[1] The cryogenic frost point hygrometer (CFH), currently built at the University of Colorado, is a new balloon borne hygrometer, which is capable of continuously measuring water vapor between the surface and the middle stratosphere. The design is loosely based on the old NOAA/CMDL frost point hygrometer, with improved accuracy and a number of significant new features that overcome some limitat...

متن کامل

Microwave and Millimeter-Wave Radiometric and Radiosonde Observations in an Arctic Environment

In a recent paper by Mattioli et al., a significant difference was observed between upper-tropospheric and lower-stratospheric water vapor profiles as observed by two radiosonde systems operating in the Arctic. The first was the Vaisala RS90 system as operated by the U.S. Department of Energy’s Atmospheric Radiation Measurement Program; the second was the operational radiosondes launched by the...

متن کامل

Isolating the roles of different forcing agents in global stratospheric temperature changes using model integrations with incrementally added single forcings.

Satellite instruments show a cooling of global stratospheric temperatures over the whole data record (1979-2014). This cooling is not linear, and includes two descending steps in the early 1980s and mid-1990s. The 1979-1995 period is characterized by increasing concentrations of ozone depleting substances (ODS) and by the two major volcanic eruptions of El Chichón (1982) and Mount Pinatubo (199...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013